
Dynamical resonance can account for seasonality of
influenza epidemics
Jonathan Dushoff*†‡, Joshua B. Plotkin§, Simon A. Levin*, and David J. D. Earn¶

*Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540; †Fogarty International Center, National Institutes of Health,
Bethesda, MD 20892; §Harvard Society of Fellows, 78 Mount Auburn Street, Cambridge, MA 02138; and ¶Department of Mathematics and Statistics,
McMaster University, Hamilton, ON, Canada L8S 4K1

Contributed by Simon A. Levin, October 6, 2004

Influenza incidence exhibits strong seasonal fluctuations in tem-
perate regions throughout the world, concentrating the mortality
and morbidity burden of the disease into a few months each year.
The cause of influenza’s seasonality has remained elusive. Here we
show that the large oscillations in incidence may be caused by
undetectably small seasonal changes in the influenza transmission
rate that are amplified by dynamical resonance.

demographic stochasticity � disease dynamics � susceptible, infectious,
recovered (SIR) � immunity

The underlying cause of seasonal oscillations in influenza
incidence (1) remains unclear despite at least 80 years of

investigation (2). These oscillations are presumably due to some
mechanism that causes seasonal changes in the effective trans-
mission rate of the virus from person to person (often called
seasonal forcing). But laboratory experiments and epidemiolog-
ical studies have failed to establish whether these transmission
changes are due to direct effects of temperature and humidity on
transmission (3), to changes in mixing patterns [e.g., school terms
(4) or simply more time spent indoors], or to other factors, such
as increased viral production under winter conditions (evi-
denced by higher febrile reaction to identical influenza expo-
sures; ref. 5). In fact, as we show here, it may be impossible to
establish the underlying cause of seasonality in influenza epi-
demics, because the large observed oscillations in incidence can
be generated by seasonal changes in the transmission rate that
are too small to measure.

For an infectious disease that induces permanent immunity,
simple deterministic models indicate that disease incidence has
an intrinsic tendency to oscillate, even in the absence of exog-
enous driving factors. But these intrinsic oscillations are always
damped (6). Such models are often called susceptible, infectious,
recovered (SIR) models, referring to the transition of an indi-
vidual between susceptible, infectious, and recovered states.

For influenza, immunity is not permanent. After recovering
from one antigenic variant of the virus, a person is usually at least
partially susceptible to new variants within a few years, due to
gradual evolution of the virus (7). We model this process of
antigenic drift by simply allowing people to lose their resistance
to the circulating virus and hence to move back to the susceptible
class after a few years [i.e., a SIR-susceptible (SIRS) model]. For
simplicity, we do not explicitly model the exposed population but
instead include people infected but not yet infectious in the ‘‘I’’
box. Including an exposed class yields similar results.

In a SIRS model, the intrinsic period of oscillation is approx-
imately T � 2��DL�(R0-1), where D is the mean infectious
period, and L is the average duration of immunity (4, 6). The
basic reproductive number R0 is defined as the expected number
of secondary infections that a single infectious individual will
cause in a wholly susceptible population.

If the period of endogenous SIRS oscillations (T) is near the
period of seasonal forcing (1 year), then these two factors may
resonate to produce greatly amplified oscillations in incidence
(8). Appropriate parameter values for influenza (9–11), 6–10

days for D, 4–8 years for L, and 4–16 for R0, yield an endogenous
oscillatory period, T, between 0.4 and 1.5 years. Therefore, the
intrinsic period of oscillation for influenza is potentially close to
the (annual) period of seasonal forcing, in contrast to human
viral diseases that engender permanent effective immunity and
typically have intrinsic interepidemic periods of 2–5 years (4).

Whereas deterministic models treat the number of people in
each state as a continuous variable, in reality, individuals are
discrete, and the process is more appropriately modeled as a
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Fig. 1. The effect of seasonal forcing on oscillations in influenza incidence.
We simulate disease dynamics in a population of 500,000 people both with
(blue) and without (red) demographic stochasticity. R0 varies sinusoidally
between 9.6 and 10.4. The black curve shows the (nearly invisible) oscillations
in incidence that these variations in R0 would cause if disease dynamics
responded instantaneously to changes in transmission, without resonance or
transient fluctuations. (a) Weak resonance. The intrinsic oscillatory period is
T � 0.59 years (duration of infectiousness 0.02 yr, duration of immunity 4 yr).
(b) Strong resonance. T � 0.94 yr (duration of infectiousness 0.025 yr, dura-
tion of immunity 8 yr). When parameters are drawn at random from the
ranges given for R0, D, and L in the text, we find strong oscillations due to
resonance (winter peak�summer trough �5) for 21% of parameter sets
(Fig. 2).
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stochastic Markov chain. The resulting demographic stochastic-
ity causes fluctuations in disease incidence to persist (12).
Demographic stochastisticity is more important if the average
duration of immunity is long compared with the duration of
infection (13). In the case of influenza, the ratio between these
two time scales is on the order of a few years to 1–2 weeks,
or �100.

Methods
The red curves in Fig. 1 represent solutions to the deterministic
SIRS epidemic model defined by the equations

dS�dt � �N � S � I��L � �� t�IS�N [1]

dI�dt � �� t�IS�N � I�D [2]

where t is time in years, N is the total population size, and
N�S�I gives the number of resistant (immune) individuals. The
contact rate �(t) varies sinusoidally according to the formula

�� t� � �0�1 � �1 cos�2� t�� . [3]

In this formulation, R0 equals D�0. The parameter values
corresponding to Fig. 1a are n � 500,000, L � 4 yr, D � 0.02
yr, �0 � 500 per year, and �1 � 0.02. The parameter values in
Fig. 1b are n � 500,000, L � 8 yr, D � 0.025 yr, �0 � 400 per
year, and �1 � 0.02. The blue curves in Fig. 1 represent solutions
to the discrete-state continuous-time Markov chain in which
events occur at the exponential rates given in Table 1.
The Markov chain was simulated by using the standard Gillespie
algorithm (14).

Results
Fig. 1 shows the effect of resonance, using simple deterministic
and stochastic models of inf luenza dynamics in a population of
500,000 people, with very small sinusoidal forcing of the
transmission rate. If resonance is weak (i.e., the endogenous
period T is far from 1 year), then the resulting oscillations in
incidence are much smaller than are actually observed for
inf luenza. If resonance is strong, however, the resulting dy-
namics exhibit regular annual epidemics in which incidence

increases by a factor of three or more from winter to summer.
Fig. 2 shows the endogenous period and the resulting size of
oscillations for parameters chosen at random from the plau-
sible range for inf luenza. Due to resonance, large oscillations
(average peak-to-trough ratio �5) occur for about one-fifth of
parameter sets, even when the transmission rate varies by only
a few percent.

Researchers have worked to identify and measure a seasonal
component of influenza transmission with the goal of explaining
large annual f luctuations in incidence. But, as we have seen here
using simple models, these large fluctuations may be caused by
exogenous seasonal changes in transmission that are too small to
detect, amplified by the endogenous population dynamics of the
host–pathogen system.
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Table 1. Markov chain transition rates

Event Change Rate

Infection (S, I)3 (S � 1, I � 1) �(t)IS�N
Recovery (S, I)3 (S, I � 1) I�D
Immunity loss (S, I)3 (S � 1, I) (N � S � I)�L

Fig. 2. Magnitude of observed oscillations (ratio of peak-to-trough inci-
dence) in the stochastic forced SIRS epidemic model plotted against the
approximated period of endogenous oscillations in the SIRS model
[2��DL�(R0 � 1)], for 2,000 sets of parameters randomly chosen from the
ranges given in the text (shown are the 1,560 trials where the disease persisted
for at least 20 years after being started from the deterministic equilibrium).
Underlying variation in transmission rate is � 4% (i.e., �1 � 0.04 in Eq. 3).
Strong resonance occurs when the approximate endogenous period is near
1 year.
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